Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We propose a distributed quantum computing (DQC) architecture in which individual small-sized quantum computers are connected to a shared quantum gate processing unit (S-QGPU). The S-QGPU comprises a collection of hybrid two-qubit gate modules for remote gate operations. In contrast to conventional DQC systems, where each quantum computer is equipped with dedicated communication qubits, S-QGPU effectively pools the resources (e.g., the communication qubits) together for remote gate operations, and, thus, significantly reduces the cost of not only the local quantum computers but also the overall distributed system. Our preliminary analysis and simulation show that S-QGPU's shared resources for remote gate operations enable efficient resource utilization. When not all computing qubits (also called data qubits) in the system require simultaneous remote gate operations, S-QGPU-based DQC architecture demands fewer communication qubits, further decreasing the overall cost. Alternatively, with the same number of communication qubits, it can support a larger number of simultaneous remote gate operations more efficiently, especially when these operations occur in a burst mode.more » « less
-
Multi-sensor fusion has been widely used by autonomous vehicles (AVs) to integrate the perception results from different sensing modalities including LiDAR, camera and radar. Despite the rapid development of multi-sensor fusion systems in autonomous driving, their vulnerability to malicious attacks have not been well studied. Although some prior works have studied the attacks against the perception systems of AVs, they only consider a single sensing modality or a camera-LiDAR fusion system, which can not attack the sensor fusion system based on LiDAR, camera, and radar. To fill this research gap, in this paper, we present the first study on the vulnerability of multi-sensor fusion systems that employ LiDAR, camera, and radar. Specifically, we propose a novel attack method that can simultaneously attack all three types of sensing modalities using a single type of adversarial object. The adversarial object can be easily fabricated at low cost, and the proposed attack can be easily performed with high stealthiness and flexibility in practice. Extensive experiments based on a real-world AV testbed show that the proposed attack can continuously hide a target vehicle from the perception system of a victim AV using only two small adversarial objects.more » « less
-
With the popularity of smartphones, large-scale road sensing data is being collected to perform traffic prediction, which is an important task in modern society. Due to the nature of the roving sensors on smartphones, the collected traffic data which is in the form of multivariate time series, is often temporally sparse and unevenly distributed across regions. Moreover, different regions can have different traffic patterns, which makes it challenging to adapt models learned from regions with sufficient training data to target regions. Given that many regions may have very sparse data, it is also impossible to build individual models for each region separately. In this paper, we propose a meta-learning based framework named MetaTP to overcome these challenges. MetaTP has two key parts, i.e., basic traffic prediction network (base model) and meta-knowledge transfer. In base model, a two-layer interpolation network is employed to map original time series onto uniformly-spaced reference time points, so that temporal prediction can be effectively performed in the reference space. The meta-learning framework is employed to transfer knowledge from source regions with a large amount of data to target regions with a few data examples via fast adaptation, in order to improve model generalizability on target regions. Moreover, we use two memory networks to capture the global patterns of spatial and temporal information across regions. We evaluate the proposed framework on two real-world datasets, and experimental results show the effectiveness of the proposed framework.more » « less
-
null (Ed.)Spot-level parking availability information (the availability of each spot in a parking lot) is in great demand, as it can help reduce time and energy waste while searching for a parking spot. In this article, we propose a crowdsensing system called SpotE that can provide spot-level availability in a parking lot using drivers’ smartphone sensors. SpotE only requires the sensor data from drivers’ smartphones, which avoids the high cost of installing additional sensors and enables large-scale outdoor deployment. We propose a new model that can use the parking search trajectory and final destination (e.g., an exit of the parking lot) of a single driver in a parking lot to generate the probability profile that contains the probability of each spot being occupied in a parking lot. To deal with conflicting estimation results generated from different drivers, due to the variance in different drivers’ parking behaviors, a novel aggregation approach SpotE-TD is proposed. The proposed aggregation method is based on truth discovery techniques and can handle the variety in Quality of Information of different vehicles. We evaluate our proposed method through a real-life deployment study. Results show that SpotE-TD can efficiently provide spot-level parking availability information with a 20% higher accuracy than the state-of-the-art.more » « less
An official website of the United States government
